Validity and Reliability in Medical Education Assessment: Current Concepts

Congreso Nacional De Educacion Medica Puebla, Mexico 12 January, 2007

Steven M. Downing, PhD Department of Medical Education University of Illinois at Chicago sdowning@uic.edu

80 55 47 99 94 39 68 71 79 56 88 93	
93	
86	
88	

80 55 47	How are these numbers properly interpreted?
99	Many questions to
94	answer in order to
39	understand what
68	these numbers mean
71	We need much more
79	information
56	
88	
93	
86	
88	

80 55 47 99 94 39 68 71 79 56 88 93 93	 What number scale? Are these test scores? Counts? Percent-correct? Ranks? Standard scores? Percentiles? Scores on what exam? Exact content tested? What type of test? Cognitive achievement Standardized performance Observation of clinical
93	performance
86	Observation of clinical
88	performance?

80	How can these numbers be properly interpreted?
55	<u>wnat must de known</u>
47	Test scores
99	Percent-correct scores
94	Final MCQ exam in pathophysiology
39	250 total MCQs
68	Cumulative course content
71	Items/test developed by instructors
79	Used systematic sampling
56	 Sampled all instructional
88	objectives
93	Emphasized higher cognitive levels
86	
88	

80	But MORE INFORMATION
55	NEEDED
47	
99	test scores?
94	How reproducible are
39	these scores?
68	of MCOs on this test?
71	What is average
79	discrimination of MCQs on this test?
56	Ouality of MCOs?
88	Well written, edited?
93	Evidence-based principles?
86	 Content review, revision?
88	

80 55	STILL MORE INFORMATION MAY BE NEEDED
47	
99	How do scores on this
94	test relate to scores on
39	similar/different tests?
68	Sensible, expected
71	relationships?
79	Fit to theory?
56	Evidence of a single
88	achievement or ability
93	construct?
86	Any unexpected
88	relationships?

80 55		YET MORE INFORMATION
47		What is the passing
99		score? Grade levels?
94		How was cut score
39		established?
68		How defensible is
71		cut score?
79		Is pass score accentable?
56	_	Concoquences of
88		failing this test?
93		To students?
86		Faculty?
88		Schools?

80	
55	
47	Answers to these
99	types of <u>validity</u>
94	<u>questions</u> provide
39	some scientific
68	evidence
71	concerning the
79	meaning or the
56	proper
88	interpretation of
93	assessment data
95	
00	
88	

80 55 47 99	Validity research searches for evidence, like a detective
94 39 68	
71 79 56	
88 93 86	
88	

80 55 47 99 94 39 68	Many different sources and types of scientific evidence to support or refute specific interpretations of assessment data
71	Ŏ
79 56	
88	
93	
86	
88	

80 55 47 99	Validity concerns inferences, interpretations,
94	and meaning
39	associated with
68	accoccmont cooroc
71	assessment scores
79	
56	
88	
93	
86	
88	

Validity

"Validity is an integrated evaluative judgment of the degree to which empirical evidence and theoretical rationales support the *adequacy* and *appropriateness* of *inferences* and *actions* based on test scores and other modes of assessment."

Messick, 1989

Validity

"To validate a proposed interpretation or use of test scores is to evaluate the claims being based on the test scores. The specific mix of evidence needed for validation depends on the inferences being drawn and the assumptions being made."

Kane, 2006

Overview

□ Modern views of test validity

Scientific evidence needed to support test score interpretation

Cronbach, Messick, Kane

Standards of Educational & Psychological Testing (1999)

Some theory, key concepts, examples

Reliability as part of validity

Validity

- Validity = Scientific evidence, using theory and research, to help explain interpretation of scores
- Essence of all assessment in education
 - Assessments derive meaning <u>only</u> through validity evidence
 - Measurement in social sciences: Little or no intrinsic meaning
- Nearly all topics in measurement fall under the broad rubric of validity

Contemporary View of Validity

- All validity is construct validity
- Validity as hypothesis
 - Scientific method applied to assessments
 - Theory, hypothesis, observation, analysis, results, conclusions: Repeat

Validity Principles

- Validity research: more or less evidence for or against <u>specific uses</u> of assessment scores
 - Purpose, intended interpretation, meaning
 - Multiple sources of scientific evidence
 - Higher the stakes, the more evidence required

Validity and Science

"A proposition deserves some degree of trust only when it has survived serious attempts to falsify it."

Cronbach, 1980

Classic View of Test Validity

Traditional trinitarian view of validity

Content

- Criterion-Related
 - Concurrent
 - Predictive

Construct

- Tests were "valid" or "invalid"
- Reliability was a separate test trait

Five Sources of Evidence

- **1.** Test Content Task Representation \rightarrow Construct Domain
- **2.** Response Process Item Psychometrics
- **3.** Internal Structure Test Psychometrics
- 4. Relationships with Other Variables Correlations
 - Test-Criterion Relationships
 - Convergent and Divergent Data

5. Consequences of Testing – Social context

Standards for Educational and Psychological Testing, 1999

Sources of Validity Evidence: Test Content

Detailed understanding of the content sampled by assessment and relationship to content domain

Content-related validity studies

- Exact sampling plan, specifications, blueprint
- Representative sample of items/prompts → Domain
- Appropriate content for instructional objectives
 Cognitive level of items
 - Match to instructional objectives
- Content expertise of item/prompt writers
- Expertise of content reviewers
- Quality of items/prompts

Sources of Validity Evidence: Response Process

- *Fit of student responses to hypothesized construct?*
- Basic quality control information accuracy of item responses, recording, data handling, scoring
- Statistical evidence that item measures intended construct
 - Achievement items measure intended content and not other content
 - Ability items predict targeted achievement outcome
 - Ability items fail to predict a non-related ability or achievement outcome

Sources of Validity Evidence: Internal Structure

Statistical evidence of the hypothesized relationship between test item scores and the construct

Reliability

- Test scale reliability
- Rater reliability
 - Generalizability
- Item analysis data
 - Item difficulty and discrimination
 - MCQ option function analysis
 - Inter-item correlations
- Scale factor structure
- Dimensionality studies
- Differential item functioning (DIF) studies

Sources of Validity Evidence: Relationship to Other Variables

Statistical evidence of the hypothesized relationship between test scores and the construct

Criterion-related validity studies

- Correlations between test scores/subscores and other measures
- Convergent-Divergent studies

Sources of Validity Evidence: Consequences of Testing

- Evidence of the effects of tests on students, instruction, schools, society
- The Big Picture
 - Consequential validity
 - Social consequences of assessment
- Effects of passing-failing tests
 - Economic costs of failure
 - Costs to society of false positive/false negative decisions
- Effects of tests on instruction/learning

Reliability

Reliability – One aspect of validity

- Reliability is one important type of validity evidence
 - Assessment data can be properly interpreted only if data are "reliable," scientifically reproducible
 - Without reliability, there can be no validity
- Reliability is a necessary but not sufficient condition for validity."

Sources of Validity Evidence: Internal Structure

Statistical evidence of the hypothesized relationship between test item scores and the construct

Reliability

- Test scale reliability
- Rater reliability
- Generalizability

Reliability

Reproducibility of assessment data

- Science requires reproducible experimental data
- Assessments are mini-experiments
- Evidence from reproducible data
 - Trustworthy
 - Consistent
 - Interpretable

□ Few random errors of measurement

Reliability – Precision

Index of Measurement Precision

- Low random errors of measurement = high reliability
- Statistical estimates of random error
 - □ Index: 0.0 to +1.0
 - High value better than low value
- Standard error of measurement (SEM)

Standard Error of Measurement as function of reliability

Reliability

Reliability – Various Types

- Different types of assessments require different kinds of reliability
- Written MCQs
 - □ Scale reliability
 - Internal consistency
- Written CR—Essay
 - Inter-rater agreement
 - □ Generalizability Theory

Reliability – Various Types

Oral Exams

- Rater reliability
- Generalizability Theory
- Observational Assessments
 - □ Rater reliability
 - Inter-rater agreement
 - □ Generalizability Theory
- Performance Exams (OSCEs)
 - Rater reliability
 - Generalizability Theory

Reliability – How high?

- How high must reliability be?
 - Higher the better! Always.
 - Depends on purpose of test
 - \Box Very high-stakes: > 0.90 +
 - (Licensure tests)
 - Moderate stakes: at least ~0.75 (Classroom test, med school OSCE)
 - \Box Low stakes: >0.60
 - (Quiz, test for feedback only)

How to increase reliability?

For Written tests

- Use objectively scored formats
- At least 35-40 MCQs
- MCQs that differentiate high-low students
- For performance exams
 - At least 7-12 cases
 - Well trained SPs
 - Monitoring, QC

How to increase reliability?

Observational Exams

- Lots of independent raters (7-11)
- Standard checklists/rating scales
- Timely ratings

Summary

Validity = Meaning

- Evidence to aid interpretation of assessment data
 - Higher the test stakes, more evidence needed
- Multiple sources or methods
- Ongoing research studies
- Reliability
 - Precision of the measurement
 - One aspect of validity evidence
 - Higher reliability always better than lower

Classic Construct Validity Design: Convergent and Discriminant Studies

- Campbell and Fiske, 1959
- Empirical methods and procedures to collect, analyze data
 - Multiple methods, multiple measures
- Triangulation of Meaning and Interpretation
 - Rule in
 - Rule out

Classic Construct Validity Design for Two Clinical Performance Methods and Three Measures

Based on design by Campbell and Fiske, 1959

Threats to Validity

- Two Major Sources of Validity Threats (Messick, 1989)
 - Content Underrepresentation (CU)
 - Construct-irrelevant variance (CIV)

CU: Content Underrepresentation

Non-representative sample

- Test fails to adequately sample population
- Incorrect inferences to domain possible

□ Examples

Too few essays (SR), oral prompts, MCQs, or OSCE cases to reliably sample domain

CIV: Construct-Irrelevant Variance

Reliable measure of unintended construct

- Good measure of an irrelevant construct
 - Anatomy essay test which measures writing skill more than anatomy
 - Written Psychiatry test which measures reading proficiency better than Psychiatric content
 - Internal Medicine performance test more associated with personality than patient communication competence
 - Oral exam in Pathology which is a better measure of student "stage presence" than understanding of path
- Variable that interferes with intended interpretation or test score use